Level 636 Level 638
Level 637

Differentiation & Integration of Trigonometric Fun

34 words 0 ignored

Ready to learn       Ready to review

Ignore words

Check the boxes below to ignore/unignore words, then click save at the bottom. Ignored words will never appear in any learning session.

All None

∫sin(x) dx
-cos(x) + c
∫cos(x) dx
sin(x) + c
∫tan(x) dx
-ln|cos(x)| + c
∫cot(x) dx
ln|sin(x)| + c
∫sec(x) dx
ln|sec(x) + tan(x)| + c
∫csc(x) dx
-ln|csc(x) + cot(x)| + c
∫sin²(x) dx
x/2 - sin(2x)/4 + c
∫cos²(x) dx
x/2 + sin(2x)/4 + c
d/dx sin(x)
d/dx cos(x)
d/dx tan(x)
d/dx sec(x)
Derivative of csc(x)
d/dx cot(x)
∫1/(a^2+x^2) dx
1/a arctan(x/a) + c
∫1/√(a^2-x^2) dx
arcsin(x/a) + c
d/dx arcsin(x)
d/dx arctan(x)
y= sinx
y'= cosx
y'= -sinx
y'=sec^2 x
integral of cosx
integral of sinx
integral of sec^2 x
-1/a cos (ax+b)+c
integral of sin (ax+b)
1/a tan (ax+b)+c
integral of sec^2 (ax+b)
integral of cos(ax+b)
1/a sin (ax+b)+c
Natural Log Differentiation
y = ln x → y' = 1/x
Integrals in Log Form
∫ (1/x) dx = ln |x| + C
Exponential Differentiation
y = e^x → y' = e^x
Integrals of Exponentials
∫ e^x dx = e^x + C
Differentiation of exponentials with bases other than e
y = a^x → y' = (a^x)(ln a)
Differentiation of logs with bases other than e
y = log(base a)x → y' = (1/ln a)(1/x)
Integrals of exponentials with bases other than e
∫ a^x dx = (1/ln a)(a^x) + C